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(57) ABSTRACT

A method of staggering lanes in a peripheral component
interconnect express (PCI-Express) port is described herein.
The method includes initiating the port to enter or exit an
electrical idle state. The method also includes forwarding a
token to a predetermined lane of the port. Additionally, the
method includes turning the predetermined lane ON or OFF
by indication to an analog circuit interface. The method also
includes forwarding the token to a neighboring lane when a
staggering interval timer elapses.
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METHOD, APPARATUS, SYSTEM FOR LANE
STAGGERING AND DETERMINISM FOR
SERIAL HIGH SPEED I/O LANES

TECHNICAL FIELD

This disclosure pertains to lane staggering and determin-
ism for serial high speed I/O lane architectures.

BACKGROUND ART

Some examples of architectures with serial high speed /O
lanes include the serial advanced technology attachment
(SATA), universal serial bus (USB), and peripheral compo-
nent interconnect express (PCI-Express or PCle), among
others. The PCI-Express interconnect architecture enables
components and devices from different vendors to inter-
operate in an open architecture. This architecture spans
multiple market segments, from clients to servers. The PCle
uses numerous lanes for communication between compo-
nents, and operates according to a PCle specification. The
PCI-Express Specification states that the Electrical Idle
differential peak output voltage per lane (VIX-IDLE-DIFF-
AC-p) is not to exceed 20 mv (p-p). However, if all the lanes
of a specific configuration enter or exit an idle state simul-
taneously, the differential peak can be large, exceeding this
limit. As PCle compliant computing systems continue to
increase the number of communication lanes, the problem
becomes more challenging. As the PCle lanes shrink to 22
nm and below, the differential peak can exceed 20 mV if all
the lanes enter or exit an idle state simultaneously, which
may damage the end card circuits. This phenomenon is
observed from actual simulations. Approaches for maintain-
ing the differential peak within the specification, such as
adding large capacitors on board lanes to absorb the differ-
ential current, are not sufficient for interconnects with larger
numbers of lanes, and where the technology has shrunk to 22
nm and below.

Further, as more functionality, like PCle, gets integrated
into processors, it becomes increasingly difficult to replicate
errors found in the post debug cycle. Periodic System
Management Interrupt (PSMI) technology is some help with
this issue. However, PSMI works with deterministic proto-
cols, and PCI-Express is not deterministic. Rather, PCI-
Express includes non-deterministic elements such as flow
control, Low-Power states, and speed change built into the
specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computing system includ-
ing a peripheral component interconnect express (PCI-Ex-
press or PCle), in accordance with embodiments.

FIG. 2 is a block diagram of a PCle serial point to point
fabric, in accordance with embodiments.

FIG. 3 illustrates an example lane staggering during Wake
or Sleep timing according to a circuit interface, in accor-
dance with embodiments.

FIG. 4 is a block diagram of an example PCI-Express
port, in accordance with embodiments.

FIG. 5 is a process flow diagram of a method for lane
staggering using a PCle, in accordance with embodiments.

FIG. 6 is a speed state diagram of a PCI-Express port, in
accordance with embodiments.

FIG. 7 is a process flow diagram of a method for latency
fixing a PCI-Express port, in accordance with embodiments.
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FIGS. 8A-8D are example state diagrams of the method
for latency fixing a non-deterministic PCle port, in accor-
dance with embodiments.

FIG. 9 is a block diagram of a computing system includ-
ing a multicore processor, in accordance with embodiments.

FIG. 10 is a block diagram of an embodiment of a
multicore processor, in accordance with embodiments.

FIG. 11 is an embodiment of a system on-chip (SOC)
design, in accordance with embodiments.

DESCRIPTION OF THE EMBODIMENTS

In the following description, numerous specific details are
set forth, such as examples of specific types of processors
and system configurations, specific hardware structures,
specific architectural and micro architectural details, specific
register configurations, specific instruction types, specific
system components, specific measurements or heights, spe-
cific processor pipeline stages and operation, etc., in order to
provide an understanding of the present techniques. It will
be apparent, however, to one skilled in the art that these
specific details need not be employed to practice the present
techniques. In other instances, well known components or
methods, such as specific and alternative processor archi-
tectures, specific logic circuits or code for described algo-
rithms, specific firmware code, specific interconnect opera-
tion, specific logic configurations, specific manufacturing
techniques and materials, specific compiler implementa-
tions, specific expression of algorithms in code, specific
power down and gating techniques, or logic, and other
specific operational details of a computer system have not
been described in detail in order to avoid obscuring the
present techniques.

As computing systems are advancing, the components
therein are becoming more complex. As a result, the inter-
connect architecture to couple and communicate between
the components is also increasing in complexity to ensure
bandwidth requirements are met for component operation.
Further, different market segments expect interconnect
architectures to suit their different individual needs. For
example, the segment for servers requests higher perfor-
mance, while mobile ecosystem clients may sacrifice overall
performance for power savings. Yet, most fabrics attempt to
prioritize both performance and power savings for their
customers. Below, a number of interconnects are discussed,
which would potentially benefit from aspects of the tech-
niques described herein.

In embodiments of the present techniques, all the lanes of
high speed serial input/output (I/O) ports are turned on and
off in a staggered fashion such that the differential peak is
within the specified range. In one embodiment, staggering is
enabled on the Receive and Transmit lanes. A lane stagger
arbiter (LSA), described with reference to FIG. 3 below,
provides the ability to stagger the adjacent port regardless of
the port configuration (e.g., widths) while staggering the
lanes within ports. The ability to stagger multiple physical
ports can also be programmed.

Additionally, embodiments of the present techniques sup-
port determinism for the high speed serial I/O lanes by
eliminating the use of circuits that cause the divergence from
determinism. In such embodiments, there is no support for
the lower power states to eliminate the non-deterministic
nature of the analog squelch circuitry.

A squelch occurs when data is not being transmitted, i.e.,
there is not any voltage on the lanes. The squelch circuitry
detects whether the lanes are in electrical idle, i.e., the
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squelch. Squelches can happen because lower power states
are used to conserve power. When conserving power, data is
not being transmitted.

On the squelch circuit wire, the transmitters are sending
a serial bit stream, e.g., 1, 0, 1, 0 when actively transmitting
the data. Upon entering the lower power state, the transmit-
ter is shut off. The lanes go into electrical idle state, meaning
that the lanes have a specific common mode voltage around
0.2 or 0.3 mV. This state is detected by the squelch circuitry,

4

FIG. 1 is a block diagram of a computing system 100
including a peripheral component interconnect express
(PCI-Express or PCle), in accordance with embodiments.
The PCle is an example interconnect fabric architecture. The
PCle enables components and devices from different ven-
dors to inter-operate in an open architecture, spanning
multiple market segments; Clients (Desktops and Mobile),
Servers (Standard and Enterprise), and Embedded and Com-
munication devices. PCI-Express is a high performance,

meaning that a squelch has been detected on the wires, a 10 general purpose 1/O interconnect defined for a wide variety
squelch in electrical items. There is no activity on the wire. of future computing and communication platforms. Some
The squelch, in literal terms, means no activity on the wire. PCI attributes, such as its usage model, load-store architec-
Once the other end starts transmitting, the squelch circuit ture, and software interfaces, have been maintained through
detects activity on the wire, and the squelch is broken, its revisions, whereas previous parallel bus implementations
meaning that the lane is no longer idle. Rather, an intercon- 15 have been replaced by a highly scalable, fully serial inter-
nected component is sending data. face. The more recent versions of PCI-Express take advan-

The low power states make the analog squelch circuitry tage of advances in point-to-point interconnects, Switch-
non-deterministic. In order to eliminate the use of circuits based technology, and packetized protocol to deliver new
that cause the divergence from determinism, embodiments levels of performance and features. Power Management,
provide no support for the lower power states. Eliminating 20 Quality Of Service (QoS), Hot-Plug/Hot-Swap support,
the low power states eliminates the non-deterministic nature Data Integrity, and Error Handling are among some of the
of the analog squelch circuitry. features supported by PCI-Express.

Additionally, in order to eliminate the speed change The system 100 includes an embodiment of a fabric
involved in coming up to Gen2 or Gen3 speeds, embodi- composed of point-to-point lanes that interconnect a set of
ments of the present techniques include a proprietary mecha- 25 components. System 100 includes processor 105 and system
nism to start a processor directly at Gen2 or Gen3 speeds to memory 110 coupled to controller hub 115. Processor 105
support the high volume manufacturing (HVM) debug at includes any processing element, such as a microprocessor,
those speeds (at-speed), thus increasing the test coverage. a host processor, an embedded processor, a co-processor, or

As mentioned above, a lane stagger arbiter ensures that other processor. Processor 105 is coupled to controller hub
multiple lanes do not switch simultaneously due to power 30 115 through front-side bus (FSB) 106. In one embodiment,
state transitions. Simultaneous transitions between multiple FSB 106 is a serial point-to-point interconnect as described
lanes may cause the voltage supply to fluctuate, as demon- below. In another embodiment, lane 106 includes a serial,
strated through the circuit simulations results for an example differential interconnect architecture that is compliant with a
case shown in Table 1: different interconnect standard.

TABLE 1
PCle
Vmax/

QPI/PCle PCIe/QPI delay  Meas. Op./Power Vmin
case case Window lane Pk-Pk (mV) V)
Wakeup PCle case2 Cle:15.11 us-15.23 us Op. 20.3 0.940

(TX =RX =6 ns lanes

Per lane across Power 204 0.940

ports) lanes
Wakeup Pcle case3 PCle:15.11 us-15.23 us ~ Op. 314 0.936

(TX =RX =6 ns lanes

per lane within Power 323 0.937

ports, no port lanes

staggering)

As more serial lanes are added to components, the dif- System memory 110 includes any memory device, such as
ferential power peak increases. However, in embodiments, random access memory (RAM), non-volatile (NV) memory,
transmission and receiving lane staggering is used, along or other memory accessible by devices in system 100.
Wlth Port to Port staggering to ‘maintain a re.:sultant differ- ss System memory 110 is coupled to controller hub 115
ential peak tofpeak Voltlagebwnlﬁm the limits setlfor .thei through memory interface 116. Examples of a memory
Eli:IC-Eg)r(glrlzs.S, or example, by the PCI-Express electrica interface include a double-data ratf: (DDR) memory inte.r-

Previous solutions for determinism excluded /O from the face, a dual-channel DDR. memory interface, and a dynamic
PSMI domain. PSMI was restricted only to CPU cores. RAM (DRAM) memory interface. .

However, in embodiments of the present techniques, a high 60 In one embodiment, controller hub 115 is a root hub, root
speed serial I/O mode is used to create HVM functional complex, or root controller in a Peripheral Component
vectors at-speed to increase the test coverage. Also, some Interconnect Express (PCle or PCIE) interconnection hier-
original equipment manufacturers (OEM’s) use lock step archy. Examples of controller hub 115 include a chipset, a
operation in their platforms. Accordingly, this can also be memory controller hub (MCH), a northbridge, an intercon-
supported by determinism in high speed serial I/O mode. 65 nect controller hub (ICH) a southbridge, and a root control-

The OEM’s platforms used these hooks to achieve lock step
in their platform.

ler/hub. Often the term chipset refers to two physically
separate controller hubs, i.e., a memory controller hub
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(MCH) coupled to an interconnect controller hub (ICH).
Note that current systems often include the MCH integrated
with processor 105, while controller 115 is to communicate
with I/O devices, in a similar manner as described below. In
some embodiments, peer-to-peer routing is optionally sup-
ported through root complex 115.

Here, controller hub 115 is coupled to switch/bridge 120
through serial lane 119. Input/output modules 117 and 121,
which may also be referred to as interfaces or ports 117 and
121, include or implement a layered protocol stack to
provide communication between controller hub 115 and
switch 120. In one embodiment, multiple devices are
capable of being coupled to switch 120.

Switch or bridge 120 routes packets or messages from
device 125 upstream, i.e., up a hierarchy towards a root
complex, to controller hub 115 and downstream, i.e., down
a hierarchy away from a root controller, from processor 105
or system memory 110 to device 125. Switch 120, in one
embodiment, is referred to as a logical assembly of multiple
virtual PCI-to-PCI bridge devices. Device 125 includes any
internal or external device or component to be coupled to an
electronic system, such as an I/O device, a Network Inter-
face Controller (NIC), an add-in card, an audio processor, a
network processor, a hard-drive, a storage device, a
CD/DVD ROM, a monitor, a printer, a mouse, a keyboard,
a router, a portable storage device, a Firewire device, a
Universal Serial Bus (USB) device, a scanner, and other
input/output devices. Often in the PCle vernacular, such as
device, is referred to as an endpoint. Although not specifi-
cally shown, device 125 may include a PCle to PCI/PCI-X
bridge to support legacy or other version PCI devices.
Endpoint devices in PCle are often classified as legacy,
PCle, or root complex integrated endpoints. Input/output
modules 122 and 126, which may also be referred to as
interfaces or ports 122 and 126, include or implement a
layered protocol stack to provide communication between
switch 120 and 1/O Device 125.

Graphics accelerator 130 is also coupled to controller hub
115 through serial lane 132. In one embodiment, graphics
accelerator 130 is coupled to an MCH, which is coupled to
an ICH. Switch 120, and accordingly 1/O device 125, is then
coupled to the ICH. The I/O modules 131 and 118 also
implement a layered protocol stack to communicate between
graphics accelerator 130 and controller hub 115. Similar to
the MCH discussion above, a graphics controller or the
graphics accelerator 130 itself may be integrated in proces-
sor 105.

Referring next to FIG. 2, which is a block diagram of a
PCle serial point to point fabric 200, in accordance with
embodiments. Although an embodiment of a PCle serial
point-to-point lane is illustrated, a serial point-to-point lane
is not so limited, as it may include any transmission path for
transmitting serial data. In the embodiment shown, a PCle
lane includes two, low-voltage, differentially driven signal
pairs: a transmit pair 206/311 and a receive pair 212/307.
Accordingly, device 205 includes transmission logic 206 to
transmit data to device 210 and receiving logic 207 to
receive data from device 210. In other words, two transmit-
ting paths, i.e., paths 216 and 217, and two receiving paths,
i.e., paths 218 and 219, are included in a PCle lane.

A transmission path refers to any path for transmitting
data, such as a transmission line, a copper line, an optical
line, a wireless communication channel, an infrared com-
munication lane, or other communication path. A connection
between two devices, such as device 205 and device 210, is
referred to as a lane, such as lane 215. A lane may support
one lane—each lane representing a set of differential signal
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6

pairs (one pair for transmission, one pair for reception). To
scale bandwidth, a lane may aggregate multiple lanes
denoted by xN, where N is any supported lane width, such
as, 1, 2, 4, 8, 16, 32, 64, or wider.

A differential pair refers to two transmission paths, such
as lines 216 and 217, to transmit differential signals. As an
example, when line 216 toggles from a low voltage level to
a high voltage level, i.e., a rising edge, line 217 drives from
a high logic level to a low logic level, i.e., a falling edge.
Differential signals potentially demonstrate better electrical
characteristics, such as better signal integrity, i.e., cross-
coupling, voltage overshoot or undershoot, ringing, etc. This
allows for a better timing window, which enables faster
transmission frequencies.

FIG. 3 is a timing diagram 300 of an example lane
staggering during Wake or Sleep timing to a circuit interface,
in accordance with embodiments. The timing diagram 300
includes lanes 302, power management control signals (lane
signals) 304, clock signal 306, and the programmable stag-
gering interval 308. The timing diagram 300 shows how the
LSA sends the lane signals 304 to the circuit interface, e.g.,
an Analog Front End, in a staggered fashion. The lane
signals 304 are staggered per lane with the circuit interface.
This can correspond to either the receiving (RX) side, i.e.,
the lanes 216, 217 of the receiving pair 206/311 of the end
card, or the lanes 218, 219 of the transmitting pair 207/312,
entering electrical idle state. When the end card enters
electrical idle state on all lanes of its configured link, the
LSA makes sure that the lanes are squelched in a staggered
fashion. Also, multiple lanes may be bundled together for
staggering. When two lanes are bundled together for stag-
gering, for example, lane 216 and 217 turn ON simultane-
ously first. A token is next passed over to second bundle
consisting of lanes 218 and 219, and so on. Up to four lanes
may be bundled to turn ON or turn OFF simultaneously. This
bundling is configurable through BIOS settings, where the
default is typically set to individual lane staggering.

FIG. 4 is a block diagram of an example PCI-Express port
400, in accordance with embodiments. The port 400
includes a lane stagger arbiter (LSA) 402, transmitter and
receiver state machines 404, and an analog front end inter-
face 406. The LSA 402 controls the transmitter and receiver
state machines 404 for all lanes inside the PCI-Express port
400.

FIG. 5 is a process flow diagram of a method 500 for lane
staggering using a PCle, in accordance with embodiments.
The method 500 provides a mechanism for low-power (as
well as speed) transitions without impacting signal integrity
and longevity of the PCI-Express components. As the num-
ber of lanes increases, and the process moves to advanced
technology nodes, this will become an enabler for designing
complex platforms. The method 500 begins at block 502,
when the port 400 is initiated to enter or exit an electrical
idle state. At block 504, the LSA 402 starts the token on
predetermined lane 0 of port 0. At block 506, the lane 0
indicates to the analog front end interface 406 to turn ON or
OFF the lane (through a power management signal, i.e., L.Os
or L1, to the interface 406). At block 508, the LSA 402 waits
for the staggering interval timer (not shown) to elapse, and
forwards the token to lane 1, which then asserts or deasserts
the L0s/L1 signal to lane 1 of the interface 406, and so on.
Additionally, embodiments of the present techniques pro-
vide the capability to enable or disable Port staggering with
the help of a fuse bit (not shown), and a microcode write to
the register structure before the start of the PCI-Express lane
training on DMI port, and before the BIOS can be invoked.
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Typically, the lanes of the PCI-Express port 400 lane up
at a speed state of Genl, and then change speed from Genl
to Gen2 or Gen3. In PCI-Express, the lane initially starts
from Electrical Idle, lanes up to Genl1 and then moves to Gen
1/3. Each speed change (Gen2/3) involves going through
Electrical Idle to change the Data Rate (Gen2/3), and this
involves the non-deterministic squelch circuitry. However,
in embodiments of the techniques described herein, the
PCI-Express is deterministic.

The non-determinism of previous PCI-Express results
from: 1) having a receiver which is nondeterministic as it
recovers the clock from serial high speed data, 2) lane
training involving squelch circuitry, or lanes entering/exiting
electrical Idle, 3) elastic buffer support of non-common
clock configuration, and 4) a wide range of the supported
lane-to-lane skew which also contributes to non-determin-
ism. The PCI-Express Specification allows up to 20 ns of
skew between adjacent lanes and 8 ns of the skew between
the adjacent lanes as the tolerable limit which the receiver
logical portion handles to keep the link operative.

FIG. 6 is a speed state diagram of a PCI-Express port, in
accordance with embodiments. State 602 represents an ini-
tial state where the lane starts up at the highest speed, either
Gen2/3. In this way, there is no movement through speed
changes, i.e., no lane up from Genl. This prevents the
PCI-Express lane from entering into Electrical Idle for speed
change reasons. Additionally, this supports the at-speed
HVM test vector generation for the SCAD board loopback
testing using a proprietary flow. In these boards, generally
the processor’s high speed serial 1/O transmit lane is con-
nected to its own receiver lanes to perform the Electrical
characterization. However, in examples of the present tech-
niques, the Gen3 speed may be entered from the beginning
itself, without first entering a Genl speed state and a speed
change. This helps for the at-speed HVM test vector gen-
eration, reducing the time of testing and vector capturing.

FIG. 7 is a process flow diagram of a method 700 for
latency fixing a PCI-Express port, in accordance with
embodiments. Latency fixing compensates for the causes of
non-determinism described above. In other words, latency
fixing fixes non-determinism. The last step in the PCI-
Express lane training is to do lane to lane skew. The method
700 for latency fixing begins at block 702, where the
de-skew in the PCle port is done with SKP ordered set (SOS)
in Genl/2 or at the Start of Data Stream (SDS).

The time at which de-skew happens varies by up to 2
cycles from cold-boot to cold-boot due to the uncertainty of
crossing asynchronous clock domains. Accordingly, at block
704, to eliminate the non-determinism, the LSA 402 delays
the de-skew operation until there are at least a few more
symbols beyond the SOS/SDS symbols in the de-skew
buffer. These extra symbols provide a buffer to counter the
2 cycles of non-determinism. After the de-skew is done, at
block 706, the PCI-Express lane layer starts receiving the
data. Without latency fixing, the data delivered to the lane
layer would be non-deterministic by 2 cycles from run to
run.
FIGS. 8A-8D are example state diagrams 800A, 800B,
800C, 800D of the method 800 for latency fixing a non-
deterministic PCle port 500, in accordance with embodi-
ments. The state diagrams 800A, 800B, 800C, 800D show
an 8 bit determinism counter value 802. The determinism
counter starts deterministically from the Platform reset de-
assertion. The determinism counter value 802 at the time of
de-skew is captured in a configuration register and stored in
a read-write through a sticky register. System software reads
this value, referred to herein as the calibrated value.
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The LSA 402 adds a Latency fixing value to the calibrated
value, writing the result to the same configuration register. In
this way, the PCle hardware de-skews when the determinism
counter 802 is equal to the value specified in the configu-
ration register.

The state diagrams 800A, 800B, 800C, 800D also include
a de-skew buffer 804 with nine entries 806. These nine
entries 806 are sub-divided into a de-skew buffer 808 of five
entries and a latency fixing buffer 810 of four entries. In
FIGS. 8A-8D, the arrow 812 shows the position of a read
pointer (rd_ptr) and arrow 814 shows the position of a writer
pointer (wr_ptr). FIGS. 8A and 8B show that when de-skew
is done between one cold-boot (RUN1) to a second cold-
boot (RUN2), the determinism counter value 802 changes,
which results in a non-determinism of up to 2 cycles.
Accordingly, FIGS. 8A and 8B represent the position of the
read and write pointers in 2 separate cold boots without
latency fixing. The determinism counter 802 can be either
20h or 22h. Accordingly, the data delivered to the link layer
from PHY in FIGS. 8A and 8B diverges. To be deterministic,
the determinism counter (8 bit counter) stays the same from
one run to another run. In FIGS. 8C and 8D, a latency fixing
adjusts the difference in the deterministic counter value 802
of' up to 2. As shown, in FIGS. 8C and 8D, the determinism
counter value is the same: 24h, and hence the data delivered
from the PHY to the Link layer is deterministic.

FIGS. 8C and 8D show that by doing de-skew at a
deterministic time with a calibrated value (8'h22) plus 2
cycles of delay (gives value of 8'h24), data delivered to the
lane layer is deterministic. Generation of the HVM at speed
and providing increased test coverage is an enabler to ensure
high volume manufacturing with low numbers of defects
slipping in to the field. Additionally, this makes the post
silicon debug involving PCI-Express integrated into CPU
sockets possible due to repeatability. The determinism also
enables building of complex fault-tolerant systems working
in lockstep.

Referring to FIG. 9, which is a block diagram of a
computing system including a multicore processor, in accor-
dance with embodiments. The processor 900 may include
any processor, processing device, microprocessor, embed-
ded processor, digital signal processor (DSP), network pro-
cessor, handheld processor, application processor, co-pro-
cessor, system on a chip (SOC), or other device to execute
code. The processor 900, in one embodiment, includes at
least two cores 901, 902. The cores 901, 902 may be
symmetric or asymmetric. Further, the processor 900 may
include any number of processing elements that may be
symmetric or asymmetric.

As discussed herein, the term, “processing element,” may
refer to hardware or logic to support a software thread.
Examples of hardware processing elements include: a thread
unit, a thread slot, a thread, a process unit, a context, a
context unit, a logical processor, a hardware thread, a core,
or any other element capable of holding a state for a
processor, such as an execution state or architectural state. In
other words, a processing element, in one embodiment,
refers to any hardware capable of being independently
associated with code, such as a software thread, operating
system, application, or other code. A physical processor, or
processor socket, typically refers to an integrated circuit,
which potentially includes any number of other processing
elements, such as cores or hardware threads.

A core 901, 902 often refers to logic located on an
integrated circuit capable of maintaining an independent
architectural state, wherein each independently maintained
architectural state is associated with at least some dedicated
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execution resources. In contrast, a hardware thread typically
refers to any logic located on an integrated circuit capable of
maintaining an independent architectural state, wherein the
independently maintained architectural states share access to
execution resources. When certain resources are shared and
others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

The physical processor 900, includes two cores—core
901 and 902. Here, core 901 and 902 are symmetric cores,
i.e., cores with the same configurations, functional units, and
logic. In another embodiment, core 901 includes an out-of-
order processor core, while core 902 includes an in-order
processor core. However, cores 901 and 902 may be indi-
vidually selected from any type of core, such as a native
core, a software managed core, a core adapted to execute a
native Instruction Set Architecture (ISA), a core adapted to
execute a translated Instruction Set Architecture (ISA), a
co-designed core, or other known core. In a heterogeneous
core environment (i.e., asymmetric cores), some form of
translation, such as binary translation, may be used to
schedule or execute code on one or both cores. Yet to further
the discussion, the functional units illustrated in core 901 are
described in further detail below, as the units in core 902
operate in a similar manner in the depicted embodiment.

As depicted, core 901 includes two hardware threads,
which may also be referred to as hardware thread slots. In
one embodiment, software entities, such as an operating
system, potentially view processor 900 as four separate
processors, i.e., four logical processors or processing ele-
ments capable of executing four software threads concur-
rently. As alluded to above, a first thread is associated with
architecture state registers (Arch Reg) 901a; a second thread
is associated with architecture state registers 9015; a third
thread may be associated with architecture state registers
902a; and, a fourth thread may be associated with architec-
ture state registers 9025. Here, each of the architecture state
registers (101a, 9015, 902a, and 9025) may be referred to as
processing elements, thread units, and hardware threads or
hardware thread slots, as described above. The architecture
state registers 901a are replicated in architecture state reg-
isters 9015, so individual architecture states, or contexts, are
capable of being stored for logical processor 901a and
logical processor 9015. In core 901, other smaller resources,
such as instruction pointers and renaming logic in renamer
or allocator 930 may also be replicated for threads 901a and
9015. Some resources, such as re-order buffers in reorder or
retirement unit 935, I-TLB 920, load or store buffers, and
queues may be shared through partitioning. Other resources,
such as general purpose internal registers, page-table base
registers, low-level data-cache (D-Cache) and data-TLB
(d-TLB) 950, scheduler or execution units 940, and portions
of reorder or retirement unit 935 are potentially fully shared.

The processor 900 often includes other resources, which
may be fully shared, shared through partitioning, or dedi-
cated by, or to, processing elements. In FIG. 9, an embodi-
ment of an exemplary processor with logical units and the
resources of the processor 900 is illustrated. Note that the
processor 900 may include, or omit, any of these functional
units, as well as include any other known functional units,
logic, or firmware not depicted. As illustrated, core 901
includes a simplified, representative out-of-order (OOO)
processor core. But an in-order processor may be used in
different embodiments. The OOO core includes a branch
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target buffer (BTB) 920 to predict branches to be executed,
or taken, and an instruction-translation bufter (I-TLB) 920 to
store address translation entries for instructions.

Core 901 further includes decode module 925 coupled to
fetch unit 920 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 9014, 9015, respectively. Usually, core 901
is associated with a first ISA, which defines or specifies
instructions executable on processor 900. Often, machine
code instructions that are part of the first ISA include a
portion of the instruction (referred to as an opcode), which
references or specifies an instruction or operation to be
performed. Decode module 925 includes circuitry that rec-
ognizes these instructions from their opcodes, and passes the
decoded instructions in the pipeline for processing as
defined by the first ISA. For example, as discussed in more
detail below, decode module 925, in one embodiment,
includes logic to recognize specific instructions, such as
transactional instruction. As a result of the recognition by
decode module 925, the architecture or core 901 takes
specific, predefined actions to perform tasks associated with
the appropriate instruction. It is noted that any of the tasks,
blocks, operations, and methods described herein may be
performed in response to a single or multiple instructions;
some of which may be new or old instructions. The decode
module 926, in one embodiment, recognizes the same ISA
(or a subset thereof). Alternatively, in a heterogeneous core
environment, the decode module 926 recognizes a second
ISA (either a subset of the first ISA or a distinct ISA).

In one example, rename and allocator 930 include an
allocator to reserve resources, such as register files to store
instruction processing results. However, threads 901a and
9015 are potentially capable of out-of-order execution,
where rename and allocator 930 also reserve other resources,
such as reorder buffers to track instruction results. Rename
and allocator 930 may also include a register renamer to
rename program, or instruction, reference registers to other
registers internal to the processor 900. Reorder and retire-
ment unit 935 includes components, such as the reorder
buffers mentioned above, load buffers, and store buffers, to
support out-of-order execution and later in-order retirement
of instructions executed out-of-order.

Scheduler and execution units 940, in one embodiment,
include a scheduler unit to schedule instructions or opera-
tions on execution units. For example, a floating point
instruction is scheduled on a port of an execution unit that
has an available floating point execution unit. Register files
associated with the execution units are also included to store
information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execu-
tion unit, a store execution unit, and other known execution
units.

Lower level data cache and data translation buffer
(D-TLB) 950 are coupled to scheduler and execution units
940. The data cache is to store recently used or operated-on
elements, such as data operands, which are potentially held
in memory coherency states. The D-TLB 950 is to store
recent virtual, or linear, to physical address translations. As
a specific example, the processor 900 may include a page
table structure to break physical memory into a plurality of
virtual pages.

Here, cores 901 and 902 share access to higher-level or
further-out cache, such as a second level cache associated
with on-chip interface 910. Note that higher-level or further-
out refers to cache levels increasing or getting further way
from the execution units. In one embodiment, higher-level
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cache is a last-level data cache—Ilast cache in the memory
hierarchy on processor 900—such as a second or third level
data cache. However, higher level cache is not as limited, as
it may be associated with or include an instruction cache. A
trace cache—a type of instruction cache—instead may be
coupled after decode module 925 to store recently decoded
traces. Here, an instruction potentially refers to a macro-
instruction (i.e., a general instruction recognized by the
decode module 925), which may decode into a number of
micro-instructions (micro-operations).

In the depicted configuration, processor 900 also includes
on-chip interface 910. Historically, a memory controller,
which is described in more detail below, has been included
in a computing system external to processor 900. In this
scenario, on-chip interface 910 is to communicate with
devices external to processor 900, such as system memory
975, a chipset (often including a memory controller hub to
connect to memory 975 and an I/O controller hub to connect
peripheral devices), a memory controller hub, a northbridge,
or other integrated circuit. Additionally in this scenario, bus
905 may include any known interconnect, such as multi-
drop bus, a point-to-point interconnect, a serial interconnect,
a parallel bus, a coherent (e.g., cache coherent) bus, a
layered protocol architecture, a differential bus, and a GTL
bus.

Memory 975 may be dedicated to processor 900 or shared
with other devices in a system. Common examples of types
of memory 975 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 980 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network con-
troller, or other known device.

Recently however, as more logic and devices are being
integrated on a single die, such as SOC, each of these
devices may be incorporated on processor 900. For example
in one embodiment, a memory controller hub is on the same
package and/or die with processor 900. Here, a portion of the
core (an on-core portion) 910 includes one or more control-
lers for interfacing with other devices such as memory 975
or a graphics device 980. The configuration including an
interconnect and controllers for interfacing with such
devices is often referred to as an on-core (or un-core
configuration). As an example, on-chip interface 910
includes a ring interconnect for on-chip communication and
a high-speed serial point-to-point lane 905 for off-chip
communication. Yet, in the SOC environment, even more
devices, such as the network interface, co-processors,
memory 975, graphics processor 980, and any other known
computer devices and interface may be integrated on a
single die or integrated circuit to provide small form factor
with high functionality and low power consumption.

In one embodiment, processor 900 is capable of executing
a compiler, optimization, and translator code 977 to compile,
translate, and optimize application code 976 to support the
apparatus and methods described herein, or related interface.
A compiler often includes a program or set of programs to
translate source text or code into target text or code. Usually,
compilation of program, or application, code with a com-
piler is done in multiple phases, and multiple passes. These
multiple phases and passes transform hi-level programming
language code into low-level machine or assembly language
code. Yet, single pass compilers may still be used for simple
compilation. A compiler may use any known compilation
techniques and perform any known compiler operations,
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such as lexical analysis, preprocessing, parsing, semantic
analysis, code generation, code transformation, and code
optimization.

Larger compilers often include multiple phases, but most
often these phases are included within two general phases:
(1) a front-end, i.e., generally where syntactic processing,
semantic processing, and some transformation or optimiza-
tion may take place, and (2) a back-end, i.e., generally where
analysis, transformations, optimizations, and code genera-
tion takes place. Some compilers refer to a middle, which
illustrates the blurring of delineation between a front-end
and back end of a compiler. As a result, reference to
insertion, association, generation, or other operation of a
compiler may take place in any of the aforementioned
phases or passes, as well as any other known phases or
passes of a compiler. As an illustrative example, a compiler
potentially inserts operations, calls, functions, etc., in one or
more phases of compilation, such as insertion of calls and
operations in a front-end phase of compilation, and trans-
formation of the calls and operations into lower-level code
during a transformation phase. Note that during dynamic
compilation, compiler code or dynamic optimization code
may insert such operations and calls, as well as optimize the
code for execution during runtime. As a specific illustrative
example, binary code (already compiled code) may be
dynamically optimized during runtime. Here, the program
code may include the dynamic optimization code, the binary
code, or a combination thereof.

Similar to a compiler, a translator, such as a binary
translator, translates code either statically or dynamically to
optimize and translate code. Therefore, reference to execu-
tion of code, application code, program code, or other
software environment may refer to: (1) execution of one or
more compiler programs, optimization code optimizer, or
translator either dynamically or statically, to compile pro-
gram code, to maintain software structures, to perform other
operations, to optimize code, or to translate code; (2) execu-
tion of main program code including operations and calls,
such as application code that has been optimized and com-
piled; (3) execution of other program code, such as libraries,
associated with the main program code to maintain software
structures, to perform other software related operations, or to
optimize code; or (4) a combination.

Referring now to FIG. 10, which is a block diagram of an
embodiment of a multicore processor, in accordance with
embodiments. The processor 1000 includes multiple
domains. Specifically, a core domain 1030 includes a plu-
rality of cores 1030A-1030N, a graphics domain 1060
includes one or more graphics engines having a media
engine 1065, and a system agent domain 1010.

In various embodiments, system agent domain 1010
handles power control events and power management, such
that individual units of domains 1030 and 1060 (e.g. cores
and/or graphics engines) are independently controllable to
dynamically operate at an appropriate power mode/level
(e.g. active, turbo, sleep, hibernate, deep sleep, or other
Advanced Configuration Power Interface like state) in light
of the activity (or inactivity) occurring in the given unit.
Each of domains 1030 and 1060 may operate at different
voltage and/or power, and Further the individual units within
the domains each potentially operate at an independent
frequency and voltage. Note that while only shown with
three domains, understand the scope of the present tech-
niques is not limited in this regard and additional domains
may be present in other embodiments.

As shown, each core 1030 further includes low level
caches in addition to various execution units and additional
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processing elements. Here, the various cores are coupled to
each other and to a shared cache memory that is formed of
a plurality of units or slices of a last level cache (LLC)
1040A-1040N; these LLCs often include storage and cache
controller functionality and are shared amongst the cores, as
well as potentially among the graphics engine too.

As seen, a ring interconnect 1050 couples the cores
together, and provides interconnection between the core
domain 1030, graphics domain 1060 and system agent
circuitry 1010, via a plurality of ring stops 1052A-1052N,
each at a coupling between a core and LLC slice. The
interconnect 1050 is used to carry various information,
including address information, data information, acknowl-
edgement information, and snoop/invalid information.
Although a ring interconnect is illustrated, any known
on-die interconnect or fabric may be used. As an illustrative
example, some of the fabrics discussed above (e.g. another
on-die interconnect, Intel On-chip System Fabric (IOSF), an
Advanced Microcontroller Bus Architecture (AMBA) inter-
connect, a multi-dimensional mesh fabric, or other known
interconnect architecture) may be used in a similar fashion.

As further depicted, system agent domain 1010 includes
display engine 1012 which is to provide control of and an
interface to an associated display. System agent domain
1010 may include other units, such as: an integrated memory
controller 1020 that provides for an interface to a system
memory (e.g., a DRAM implemented with multiple
DIMMs; coherence logic 1022 to perform memory coher-
ence operations. Multiple interfaces may be present to
enable interconnection between the processor and other
circuitry. For example, in one embodiment at least one direct
media interface (DMI) 1016 interface is provided as well as
one or more PCIe™ interfaces 1014. The display engine and
these interfaces typically couple to memory via a PCle™
bridge 1018. Still further, to provide for communications
between other agents, such as additional processors or other
circuitry, one or more other interfaces (e.g. an Intel® Quick
Path Interconnect (QPI) fabric) may be provided.

Turning next to FIG. 11, which is an embodiment of a
system on-chip (SOC) design, in accordance with embodi-
ments. As a specific illustrative example, SOC 1100 is
included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to commu-
nicate, such as a handheld phone, smartphone, tablet, ultra-
thin notebook, notebook with broadband adapter, or any
other similar communication device. Often a UE connects to
a base station or node, which potentially corresponds in
nature to a mobile station (MS) in a GSM network.

Here, SOC 1100 includes 2 cores-1106 and 1107. Similar
to the discussion above, cores 1106 and 1107 may conform
to an Instruction Set Architecture, such as an Intel® Archi-
tecture Core™-based processor, an Advanced Micro
Devices, Inc. (AMD) processor, a MIPS-based processor, an
ARM-based processor design, or a customer thereof, as well
as their licensees or adopters. Cores 1106 and 1107 are
coupled to cache control 1108 that is associated with bus
interface unit 1109 and L2 cache 1110 to communicate with
other parts of system 1100. Interconnect 1111 includes an
on-chip interconnect, such as an IOSF, AMBA, or other
interconnect discussed above, which potentially implements
one or more aspects of the described techniques.

Interface 1111 provides communication channels to the
other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135
to hold boot code for execution by cores 1106 and 1107 to
initialize and boot SOC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
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controller 1145 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control Q1650 (e.g. Serial Periph-
eral Interface) to interface with peripherals, video codecs
1120 and Video interface 1125 to display and receive input
(e.g. touch enabled input), GPU 1115 to perform graphics
related computations, etc. Any of these interfaces may
incorporate aspects of the techniques described herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1170, 3G modem 1175,
GPS 1185, and WiFi 1185. Note as stated above, a UE
includes a radio for communication. As a result, these
peripheral communication modules are not all required.
However, in a UE some form a radio for external commu-
nication is to be included.

EXAMPLE 1

A method of debugging a computing system using a
non-core system register, or register means, is described
herein. The register means may include a register of acces-
sible by a system agent of the computing device, wherein the
system agent is a non-core component of the computing
device. Debug data may be generated at agents in the
computing system including agents of firmware devices and
agents of system software such as drivers of the computing
system. The agents have access to the register means, and
the register may accessible via a observability fabric means,
such as a system interconnect fabric, to enable debug data to
be stored in a memory unit and analyzed by debug software
and/or hardware. The observability fabric means may
include an on-chip analyzer configured to compress and time
stamp the debug data.

EXAMPLE 2

An apparatus is described herein. The apparatus may be
configured to receive debug data at a non-core register, or
register means. The register may be configured to record the
debug data and a memory unit, or memory means, may be
configured to receive the debug data via an interconnect
fabric, such as an observability fabric, or observability fabric
means. The memory unit may store the debug data and may
be accessible by debug software and/or hardware to deter-
mine the source of the debug data. In embodiments, the
interconnect fabric may include analyzer logic, such as an
on-chip analyzer, to compress and timestamp the data to be
received at the memory unit. The agents may include driver
agents of an operating system and/or firmware agents of
microcontrollers communicatively coupled to the system. In
embodiments, the agents, such as the firmware agents, may
have access to the register via a computing system inter-
connect means, such as the observability fabric discussed
above.

EXAMPLE 3

A computing device is described herein. The computing
device may include a driver agent, a firmware agent, and a
register means. The driver agent may be driver logic that is
accessible by driver code to be executed on a processing
element. The driver agent is associated with an operating
system of the computing device to generate debug data. The
firmware agent may be controller logic to provide second
debug data for one or more controllers. The register means,
may be a register, or a storage clement, disposed in a
non-core portion of the computing device, wherein the
firmware agents and the driver agents may provide debug



US 9,454,213 B2

15

data to the register. The register may be configured to record
the debug data and a memory unit, or memory means, may
be configured to receive the debug data via an interconnect
fabric, such as an observability fabric, or observability fabric
means. The memory unit may store the debug data and may
be accessible by debug software and/or hardware to deter-
mine the source of the debug data. In embodiments, the
interconnect fabric may include analyzer logic, such as an
on-chip analyzer, to compress and timestamp the data to be
received at the memory unit. The agents may include driver
agents of an operating system and/or firmware agents of
microcontrollers communicatively coupled to the system. In
embodiments, the agents, such as the firmware agents, may
have access to the register via an computing system inter-
connect means, such as the observability fabric discussed
above.

An embodiment is an implementation or example. Ref-
erence in the specification to “an embodiment,” “one
embodiment,” ‘“some embodiments,” “various embodi-
ments,” or “other embodiments” means that a particular
feature, structure, or characteristic described in connection
with the embodiments is included in at least some embodi-
ments, but not necessarily all embodiments, of the present
techniques. The various appearances of “an embodiment,”
“one embodiment,” or “some embodiments” are not neces-
sarily all referring to the same embodiments.

Not all components, features, structures, characteristics,
etc. described and illustrated herein need be included in a
particular embodiment or embodiments. If the specification
states a component, feature, structure, or characteristic
“may”, “might”, “can” or “could” be included, for example,
that particular component, feature, structure, or characteris-
tic is not required to be included. If the specification or claim
refers to “a” or “an” element, that does not mean there is
only one of the element. If the specification or claims refer
to “an additional” element, that does not preclude there
being more than one of the additional element.

It is to be noted that, although some embodiments have
been described in reference to particular implementations,
other implementations are possible according to some
embodiments. Additionally, the arrangement and/or order of
circuit elements or other features illustrated in the drawings
and/or described herein need not be arranged in the particu-
lar way illustrated and described. Many other arrangements
are possible according to some embodiments.

In each system shown in a figure, the elements in some
cases may each have a same reference number or a different
reference number to suggest that the elements represented
could be different and/or similar. However, an element may
be flexible enough to have different implementations and
work with some or all of the systems shown or described
herein. The various elements shown in the figures may be the
same or different. Which one is referred to as a first element
and which is called a second element is arbitrary.

It is to be understood that specifics in the aforementioned
examples may be used anywhere in one or more embodi-
ments. For instance, all optional features of the computing
device described above may also be implemented with
respect to either of the methods or the computer-readable
medium described herein. Further, although flow diagrams
and/or state diagrams may have been used herein to describe
embodiments, the techniques are not limited to those dia-
grams or to corresponding descriptions herein. For example,
flow need not move through each illustrated box or state or
in exactly the same order as illustrated and described herein.

The present techniques are not restricted to the particular
details listed herein. Indeed, those skilled in the art having
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the benefit of this disclosure will appreciate that many other
variations from the foregoing description and drawings may
be made within the scope of the present techniques. Accord-
ingly, it is the following claims including any amendments
thereto that define the scope of the present techniques.

While the present techniques has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present techniques.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Further, most designs, at some
stage, reach a level of data representing the physical place-
ment of various devices in the hardware model. In the case
where conventional semiconductor fabrication techniques
are used, the data representing the hardware model may be
the data specifying the presence or absence of various
features on different mask layers for masks used to produce
the integrated circuit. In any representation of the design, the
data may be stored in any form of a machine readable
medium. A memory or a magnetic or optical storage such as
a disc may be the machine readable medium to store
information transmitted via optical or electrical wave modu-
lated or otherwise generated to transmit such information.
When an electrical carrier wave indicating or carrying the
code or design is transmitted, to the extent that copying,
buffering, or re-transmission of the electrical signal is per-
formed, a new copy is made. Thus, a communication pro-
vider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded into a carrier wave, embodying
embodiments of the present techniques.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Further, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘to’ or ‘configured to,” in one embodi-
ment, refers to arranging, putting together, manufacturing,
offering to sell, importing and/or designing an apparatus,
hardware, logic, or element to perform a designated or
determined task. In this example, an apparatus or element
thereof that is not operating is still ‘configured to’ perform
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a designated task if it is designed, coupled, and/or intercon-
nected to perform said designated task. As a purely illustra-
tive example, a logic gate may provide a 0 or a 1 during
operation. But a logic gate ‘configured to’ provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or O. Instead, the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock. Note once again that use of the
term ‘configured to’ does not require operation, but instead
focus on the latent state of an apparatus, hardware, and/or
element, where in the latent state the apparatus, hardware,
and/or element is designed to perform a particular task when
the apparatus, hardware, and/or element is operating.

Further, use of the phrases ‘capable of/to,” and or ‘oper-
able to,” in one embodiment, refers to some apparatus, logic,
hardware, and/or element designed in such a way to enable
use of the apparatus, logic, hardware, and/or element in a
specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state
of an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an
apparatus in a specified manner.

A value, as used herein, includes any known representa-
tion of a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values is also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values in
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held in a
computer system.

Moreover, states may be represented by values or portions
of' values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e., reset, while an updated value potentially includes
a low logical value, i.e., set. Note that any combination of
values may be used to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
infrared signals, digital signals); etc, which are to be distin-
guished from the non-transitory mediums that may receive
information there from.
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Instructions used to program logic to perform embodi-
ments of the techniques may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Further, the instructions can be distributed via a
network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present techniques. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Further, the particular features,
structures, or characteristics may be combined in any suit-
able manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the techniques as set
forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense. Further, the foregoing use of
embodiment and other exemplarily language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

What is claimed is:

1. A method of staggering lanes in a high speed serial
input/output (I/O) port, comprising:

initiating the high speed serial /O port to enter an

electrical idle state;

and staggering a plurality lanes of the high speed serial

1/O port such that multiple lanes do not switch power
states simultaneously, wherein staggering comprises:

a) forwarding a token to a predetermined lane of the high

speed serial I/O port;

b) turning a lane associated with the forwarded token ON

or OFF by indication to an analog circuit interface;

¢) forwarding the token to a neighboring lane when a

staggering interval timer elapses; and

d) repeating steps b and c until the high speed serial I/O

port enters the electrical idle state.

2. The method of claim 1, comprising initiating the high
speed serial 1/O port to exit the electrical idle state.

3. The method of claim 1, comprising grouping all the
lanes of the high speed serial I/O port into a plurality of
groups, each group comprising a specified number of lanes,
and wherein all lanes of each group are staggered such that
multiple lanes do not switch power states simultaneously.
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4. The method of claim 1, the lanes comprising a receiver
link and a transmitter link.

5. The method of claim 1, the high speed serial /O port
comprising a universal serial bus (USB) port.

6. The method of claim 1, the high speed serial I/O port
comprising a peripheral component interconnect express
(PCI-Express) port.

7. The method of claim 1, the high speed serial /O port
comprising a serial advanced technology attachment (SATA)
port.

8. The method of claim 1, comprising starting a processor
directly at Gen2 speeds to support high volume manufac-
turing (HVM) debug at Gen2 speeds.

9. The method of claim 8, comprising starting the pro-
cessor directly at Gen3 speeds to support HVM debug at
Gen3 speeds.

10. A system, comprising:

a storage element to be updated to hold a representation

of an active power state;

control logic coupled to the storage element to initiate

entry of a port into the active power state from an
electrical idle state in response to the storage element
being updated to hold the representation of the active
power state;

delay logic coupled to the control logic to transition one

or more of a plurality of lanes to be associated with the
port into the active power state at different times in
response to the control logic initiating entry of the port
into the active power state;

speed logic coupled to the delay logic to start the proces-

sor directly at Gen3 speeds to support HVM debug at
Gen3 speeds; and

stagger logic coupled to the delay logic to:

a) forward a token to a predetermined lane of the port:

b) turn a lane with the forwarded token ON or OFF by

indication to an analog circuit interface:

c) forward the token to a neighboring lane when a

staggering interval timer elapses; and

d) repeat steps b and ¢ until the active power state is

updated.
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11. The system of claim 10, comprising:

delay logic to delay deskewing data passing through the
port until a buffer contains more symbols than a pre-
determined number of delay cycles;

generation logic to generate deterministic data by deskew-

ing in the non-deterministic port with SKP ordered set
(SOS); and

receive logic to receive the deterministic data.

12. The system of claim 10, comprising a storage unit to
group all the lanes of the port into a plurality of groups, each
group comprising an equal a specified number of lanes, and
wherein all lanes of each group are staggered such that
multiple lanes do not switch power states simultaneously.

13. The system of claim 10, all the lanes comprising a
receiver link and a transmitter link.

14. A non-transitory computer readable medium including
code, when executed, to cause a processing device to:

initiate a high speed serial input/output (I/O) port to enter

an electrical idle state; stagger a plurality lanes of the
high speed serial I/O port such that multiple lanes do
not switch power states simultaneously, by:

a) forwarding a token to a predetermined lane of the high

speed serial I/O port;

b) turning a lane associated with the forwarded token ON

or OFF by indication to an analog circuit interface;

¢) forwarding the token to a neighboring lane when a

staggering interval timer elapses; and

d) repeating steps b and c until the high speed serial I/O

port enters the electrical idle state.

15. The medium of claim 14, comprising code, when
executed, to cause the processing device to initiate the high
speed serial 1/O port to exit the electrical idle state.

16. The medium of claim 15, the lanes comprising a
receiver link and a transmitter link.

17. The medium of claim 15, the high speed serial 1/O port
comprising a peripheral component interconnect express
(PCI-Express) port.



